

Europäische Technische Bewertung

ETA-23/0669 vom 22.11.2023

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Österreichisches Institut für Bautechnik (OIB)

Handelsname des Bauprodukts

Egger EcoBox

Produktfamilie, zu der das Bauprodukt gehört

Holzbauträger und -stützen

Hersteller

Egger Holzwerkstoffe Wismar GmbH & Co. KG Am Haffeld 1 23970 Wismar DEUTSCHLAND

Herstellungsbetrieb

Egger Holzwerkstoffe Wismar GmbH & Co. KG Am Haffeld 1 23970 Wismar DEUTSCHLAND

Diese Europäische Technische Bewertung enthält

23 Seiten, einschließlich 4 Anhängen die fester Bestandteil dieser Bewertung sind.

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von

Europäisches Bewertungsdokument (EAD) 130367-00-0304 "Balken und Stützen auf Verbundholzbasis", ausgestellt.

Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen haben dem Originaldokument zu entsprechen und sind als solche zu kennzeichnen.

Diese Europäische Technische Bewertung darf – auch bei elektronischer Übermittlung – nur ungekürzt wiedergegeben werden. Mit schriftlicher Zustimmung des Österreichischen Instituts für Bautechnik darf jedoch eine teilweise Wiedergabe erfolgen. Eine teilweise Wiedergabe ist als solche zu kennzeichnen.

Besondere Teile

1 Technische Beschreibung des Produkts

1.1 Allgemeines

Diese Europäische Technische Bewertung (ETA) betrifft die Holzbauträger und – stützen mit kastenförmigen Querschnitt "Egger EcoBox". Egger EcoBox besteht aus Flanschen aus Vollholz für tragende Zwecke sowie Stegen aus Platten aus langen, flachen, ausgerichteten Spänen (OSB) die mittels Klebstoff verbunden werden.

Wärmedämmstoffe können in die Egger EcoBox eingelegt werden. Die Wärmedämmstoffe liefern keinen Beitrag zur Tragfähigkeit der Holzbauträger und – stützen mit kastenförmigen Querschnitt.

Egger EcoBox entspricht den Angaben in den Anhängen 1 bis 3. Die in diesen Anhängen nicht angegebenen Werkstoffeigenschaften, Abmessungen und Toleranzen von Egger EcoBox sind im technischen Dossier¹ der Europäischen Technischen Bewertung enthalten.

Eine Behandlung mit Holz- und Flammschutzmitteln ist nicht Gegenstand der Europäischen Technischen Bewertung.

1.2 Flansche

Die Flansche bestehen aus nach Festigkeit sortiertem Bauholz für tragende Zwecke mit rechteckigem Querschnitt gemäß EN 14081-1² bzw. keilgezinktem Vollholz für tragende Zwecke gemäß EN 15497. Die Festigkeitsklasse ist C16. Es darf nur technisch getrocknetes Holz verwendet werden.

Die Holzart ist Europäische Fichte oder ein gleichwertiges Nadelholz.

1.3 Stege

Die Stege bestehen aus Platten aus langen, flachen, ausgerichteten Spänen (OSB) für tragende Zwecke zur Verwendung im Feuchtbereich, Typ OSB/3, gemäß EN 300.

1.4 Klebstoff

Der Klebstoff zur Verklebung der Stege mit den Flanschen entspricht dem Typ I gemäß EN 15425 oder EN 301.

1.5 Wärmedämmstoffe

Wärmedämmstoffe die in Egger EcoBox eingelegt werden entsprechen einer harmonisierten europäischen Norm oder einer Europäischen Technischen Bewertung und tragen das CE-Kennzeichen.

Die Wärmedämmstoffe liefern keinen Beitrag zur Tragfähigkeit der Egger EcoBox. Die Wärmedämmstoffe sind nicht Gegenstand der Europäischen Technischen Bewertung.

2 Spezifizierung des/der Verwendungszwecks/Verwendungszwecke gemäß dem anwendbaren Europäischen Bewertungsdokument

2.1 Verwendungszweck

Egger EcoBox ist als tragendes Bauelement in Gebäuden und Holzbauwerken vorgesehen z.B. Bauteile oder Rahmenelemente für Wände, Dächer, Decken und Träger.

Egger EcoBox darf nur statischen und quasistatischen Einwirkungen ausgesetzt werden. In Erdbebengebieten ist der Verhaltensbeiwert der Holzbauträger und -stützen bei der Bemessung auf

Das technische Dossier der Europäischen Technischen Bewertung ist beim Österreichischen Institut für Bautechnik hinterlegt und wird, nur soweit dies für die Aufgaben der in das Verfahren für die Bewertung und Überprüfung der Leistungsbeständigkeit eingeschalteten notifizierten Produktzertifizierungsstelle relevant ist, der notifizierten Produktzertifizierungsstelle ausgehändigt.

Bezugsdokumente sind in Anhang 4 angegeben.

nichtdissipatives bzw. niedrig-dissipatives Tragwerksverhalten ($q \le 1,5$) begrenzt, siehe EN 1998-1, Abschnitt 1.5.2 und 8.1.3 b.

Egger EcoBox ist zur Verwendung in den Nutzungsklassen 1 und 2 gemäß EN 1995-1-1 vorgesehen.

2.2 Allgemeine Grundlagen

Egger EcoBox wird nach den Vorgaben der Europäischen Technischen Bewertung in dem Verfahren hergestellt, das bei der Begehung des Herstellungsbetriebs durch das Österreichische Institut für Bautechnik festgestellt und im technischen Dossier beschrieben ist.

Der Hersteller hat sicherzustellen, dass die Angaben gemäß den Abschnitten 1, 2 und 3 sowie den Anhängen der Europäischen Technischen Bewertung jenen Personen bekannt gemacht werden, die mit Planung und Ausführung der Bauwerke betraut sind.

Der Stege und Flansche werden mittels Klebstoff miteinander verbunden. Der Klebstoff ist auf das gehobelte Bauholz bzw. OSB aufzubringen. Stumpfstöße sind in den Flanschen und Stegen nicht auszuführen.

<u>Bemessung</u>

Die Europäische Technische Bewertung erstreckt sich nur auf die Herstellung und Verwendung von Egger EcoBox. Der Standsicherheitsnachweis der Bauwerke einschließlich der Krafteinleitung in das Produkt ist nicht Gegenstand der Europäischen Technischen Bewertung.

Die folgenden Bedingungen sind zu beachten:

- Die Bemessung von Egger EcoBox erfolgt unter der Verantwortung eines mit solchen Produkten vertrauten Ingenieurs.
- Die Konstruktion des Bauwerks berücksichtigt den konstruktiven Holzschutz von Egger EcoBox.
- Egger EcoBox ist richtig eingebaut.

Die Bemessung von Egger EcoBox darf gemäß EN 1995-1-1 unter Berücksichtigung der Anhänge der Europäischen Technischen Bewertung erfolgen.

Die am Ort der Verwendung gültigen Normen und Vorschriften sind zu beachten.

Verpackung, Transport, Lagerung, Wartung, Austausch und Reparatur

Hinsichtlich Verpackung, Transport, Lagerung, Instandhaltung, Austausch und Reparatur des Produkts ist es die Zuständigkeit des Herstellers, geeignete Maßnahmen umzusetzen und seine Kunden über Transport, Lagerung, Instandhaltung, Austausch und Reparatur des Produkts in einem Umfang zu informieren, den er als erforderlich ansieht.

Einbau

Es wird davon ausgegangen, dass die Verarbeitung des Produkts gemäß den Anweisungen des Herstellers oder – beim Fehlen derartiger Anweisungen – branchenüblich erfolgt.

2.3 Vorgesehene Nutzungsdauer

Die Anforderungen in dieser Europäischen Technischen Bewertung beruhen auf der Annahme einer vorgesehenen Nutzungsdauer von Egger EcoBox von 50 Jahren im eingebauten Zustand, vorausgesetzt, dass die in Abschnitt 2.2 festgelegten Bedingungen für die Verwendung, Wartung und Instandsetzung erfüllt sind. Diese Annahme beruht auf dem derzeitigen Stand der Technik und den verfügbaren Kenntnissen und Erfahrungen³.

Die tatsächliche Nutzungsdauer eines in einem bestimmten Bauwerk eingebauten Produkts hängt von den das Bauwerk umgebenden Umweltbedingungen sowie von den besonderen Bedingungen für Bemessung, Ausführung, Verwendung und Wartung des Bauwerks ab. Daher kann nicht ausgeschlossen werden, dass in gewissen Fällen die tatsächliche Nutzungsdauer des Produkts kürzer als die vorgesehene Nutzungsdauer ist.

Die Angaben zur Nutzungsdauer des Produktes können nicht als eine durch den Hersteller bzw. seines bevollmächtigten Vertreters oder durch die EOTA oder durch die Technische Bewertungsstelle übernommene Garantie ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl der richtigen Produkte angesichts der erwarteten, wirtschaftlich angemessenen Nutzungsdauer des Bauwerks zu betrachten.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Wesentliche Merkmale des Produkts

Tabelle 1: Wesentliche Merkmale und Leistung des Bauprodukts

Nr.	Wesentliches Merkmal	Leistung des Bauprodukts			
	Grundanforderung an Bauwerke 1: Mechanische Fes	stigkeit und Standsicherheit 1)			
1	Biegemomenten-tragfähigkeit (hochkant und flachkant)	Anhang 2			
2	Zugtragfähigkeit parallel zum Produkt	Anhang 2			
3	Zugtragfähigkeit normal zum Produkt	Keine Leistung bewertet.			
4	Drucktragfähigkeit parallel zum Produkt	Anhang 2			
5	Auflagertragfähigkeit	Anhang 2			
6	Schubtragfähigkeit (hochkant)	Anhang 2 Anhang 2			
7	E-Modul parallel zur Faserrichtung	Anhang 2			
8	Schubsteifigkeit	Anhang 2			
9	Torsionsschubtragfähigkeit und Steifigkeit	Keine Leistung bewertet.			
10	Dichte	Anhang 2			
11	Kriechen und Lasteinwirkungsdauer	Anhang 2			
12	Maßbeständigkeit	Keine Leistung bewertet.			
13	Korrosionsbeständigkeit von metallischen Verbindungsmitteln und anderen Verbindern	Nicht relevant. Keine Leistung bewertet.			
14	Verklebungsgüte und Dauerhaftigkeit der Verklebung	Anhang 2			
	Grundanforderung an Bauwerke 2: I	Brandschutz			
15	Brandverhalten	Anhang 2			
16	Feuerwiderstand	Keine Leistung bewertet.			
	Grundanforderung an Bauwerke 3: Hygiene, Gest	undheit und Umweltschutz			
	Grundanforderung an Bauwerke 6: Energieeinsp	arung und Wärmeschutz			
17	Gehalt, Emission und/oder Freisetzung gefährlicher Substanzen	3.1.1			
18	Wärmeleitfähigkeit	Keine Leistung bewertet.			
19	Thermische Trägheit	Keine Leistung bewertet.			

Nr.	Wesentliches Merkmal	Leistung des Bauprodukts
	Aspekte der Dauerhaftigk	eit
20	Natürliche Dauerhaftigkeit	Anhang 2

3.1.1 Hygiene, Gesundheit und Umweltschutz

Die Freisetzung gefährlicher Substanzen ist gemäß EAD 130367-00-0304 "Balken und Stützen auf Verbundholzbasis" bestimmt. Egger EcoBox weist keine gefährlichen Substanzen auf (Formaldehyd-Klasse E1).

ANMERKUNG: Ergänzend zu den spezifischen Abschnitten der Europäischen Technischen Bewertung über gefährliche Substanzen kann es andere Anforderungen geben, die für das Produkt anwendbar sind, wenn es unter deren Anwendungsbereich fällt (z. B. übernommenes europäisches und nationales Recht und gesetzliche und behördliche Vorschriften). Um den Vorschreibungen der Bauproduktenverordnung zu genügen, müssen auch diese Anforderungen eingehalten werden, wenn und wo sie bestehen.

3.2 Bewertungsverfahren

3.2.1 Allgemeines

Die Bewertung von Egger EcoBox für die Wesentlichen Merkmale des Abschnitts 3.1, für den vorgesehenen Verwendungszweck und hinsichtlich der Anforderungen an die mechanische Festigkeit und Standsicherheit, an den Brandschutz, an Hygiene, Gesundheit und Umweltschutz, an Sicherheit und Barrierefreiheit bei der Nutzung sowie an Energieeinsparung und Wärmeschutz im Sinne der Grundanforderungen Nr. 1 bis 4 und 6 der Verordnung (EU) № 305/2011 erfolgte in Übereinstimmung mit dem Europäischen Bewertungsdokument EAD 130367-00-0304, Balken und Stützen auf Verbundholzbasis.

3.2.2 Identifizierung

Die Europäische Technische Bewertung für Egger EcoBox ist auf der Grundlage abgestimmter Unterlagen erteilt worden, die das bewertete Produkt identifizieren. Änderungen bei den Werkstoffen, bei der Zusammensetzung, bei den Merkmalen des Produkts oder beim Herstellverfahren könnten dazu führen, dass diese hinterlegten Unterlagen nicht mehr zutreffen. Das Österreichische Institut für Bautechnik sollte vor Inkrafttreten der Änderungen unterrichtet werden, da eine Änderung der Europäischen Technischen Bewertung möglicherweise erforderlich ist.

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit, mit Angabe der Rechtsgrundlage

4.1 System zur Bewertung und Überprüfung der Leistungsbeständigkeit

Gemäß Entscheidung der Kommission 99/92/EG ist das auf Egger EcoBox anzuwendende System zur Bewertung und Überprüfung der Leistungsbeständigkeit System 1. Das System 1 ist im Anhang, Punkt 1.2. der Delegierten Verordnung (EU) Nr. 568/2014 der Kommission vom 18. Februar 2014 im Einzelnen beschrieben und sieht folgende Punkte vor

- (a) Der Hersteller führt folgende Schritte durch:
 - (i) Werkseigene Produktionskontrolle;
 - (ii) zusätzliche Prüfung von im Herstellungsbetrieb entnommenen Proben durch den Hersteller nach festgelegtem Prüfplan⁴;

Der festgelegte Prüfplan ist beim Österreichischen Institut für Bautechnik hinterlegt und wird nur der in das Verfahren der für die Bewertung und Überprüfung der Leistungsbeständigkeit eingeschalteten notifizierten Produktzertifizierungsstelle ausgehändigt. Der festgelegte Prüfplan wird auch als Überwachungsplan bezeichnet.

- (b) Die notifizierte Produktzertifizierungsstelle entscheidet über die Ausstellung, Beschränkung, Aussetzung oder Zurücknahme der Bescheinigung der Leistungsbeständigkeit des Bauprodukts auf der Grundlage folgender von der Stelle vorgenommener Bewertungen und Überprüfungen:
 - (i) Bewertung der Leistung des Bauprodukts anhand einer Prüfung (einschließlich Probenahme), einer Berechnung, von Werttabellen oder Unterlagen zur Produktbeschreibung;
 - (ii) Erstinspektion des Herstellungsbetriebs und der werkseigenen Produktionskontrolle;
 - (iii) kontinuierliche Überwachung, Bewertung und Evaluierung der werkseigenen Produktionskontrolle.

4.2 Bauprodukte, für die eine Europäische Technische Bewertung ausgestellt wurde

Notifizierte Stellen, die im Rahmen des Systems 1 Aufgaben wahrnehmen, betrachten die für das betroffene Bauprodukt ausgestellte Europäische Technische Bewertung als Bewertung der Leistung dieses Produkts. Notifizierte Stellen nehmen daher die unter Abschnitt 4.1 (b)(i) aufgeführten Aufgaben nicht wahr.

Für 5 die Durchführung **Systems** Überprüfung des zur Bewertung und der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischem Bewertungsdokument

5.1 Aufgaben des Herstellers

5.1.1 Werkseigene Produktionskontrolle

Der Hersteller hat im Herstellungsbetrieb ein System der werkseigenen Produktionskontrolle einzurichten und es laufend aufrechtzuerhalten. Alle durch den Hersteller vorgesehenen Prozesse und Spezifikationen werden systematisch dokumentiert. Die werkseigene Produktionskontrolle hat die Leistungsbeständigkeit von Egger EcoBox hinsichtlich der Wesentlichen Merkmale sicherzustellen.

Der Hersteller verwendet nur Werkstoffe, die mit den entsprechenden, im festgelegten Prüfplan angegebenen Prüfbescheinigungen geliefert werden. Der Hersteller überprüft die eingehenden Vormaterialien vor ihrer Annahme. Die Überprüfung der eingehenden Vormaterialien schließt die Kontrolle der durch den Hersteller der Vormaterialien vorgelegten Prüfbescheinigungen mit ein.

Die Häufigkeiten der Kontrollen und Prüfungen, die während der Herstellung und an den fertig gestellten Produkten durchgeführt werden, sind unter Berücksichtigung des Herstellverfahrens des Produkts festgelegt und im festgelegten Prüfplan angegeben.

Die Ergebnisse der werkseigenen Produktionskontrolle werden aufgezeichnet und ausgewertet. Die Aufzeichnungen enthalten mindestens:

- die Bezeichnung des Produkts, der Werkstoffe und Bestandteile
- Art der Kontrolle und Prüfung
- das Datum der Herstellung des Produkts und das Datum der Pr
 üfung des Produkts, der Werkstoffe oder der Bestandteile
- Ergebnisse der Kontrolle und Prüfung und, soweit zutreffend, den Vergleich mit Anforderungen
- Name und Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen

Die Aufzeichnungen sind für mindestens zehn Jahre ab dem Inverkehrbringen des Bauprodukts aufzubewahren und sind der mit der laufenden Überwachung befassten notifizierten Produktzertifizierungsstelle vorzulegen. Sie sind dem Österreichischen Institut für Bautechnik auf Verlangen vorzulegen.

5.1.2 Leistungserklärung

Der Hersteller ist für die Ausstellung der Leistungserklärung zuständig. Sind alle Voraussetzungen für die Bewertung und Überprüfung der Leistungsbeständigkeit, einschließlich der Ausstellung der Bescheinigung der Leistungsbeständigkeit durch die notifizierte Produktzertifizierungsstelle erfüllt, erstellt der Hersteller eine Leistungserklärung.

5.2 Aufgaben für die notifizierte Produktzertifizierungsstelle

5.2.1 Erstinspektion des Herstellungsbetriebs und der werkseigenen Produktionskontrolle

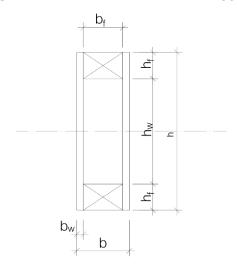
Die notifizierte Produktzertifizierungsstelle überprüft die Möglichkeiten des Herstellers hinsichtlich einer kontinuierlichen und fachgerechten Herstellung von Egger EcoBox gemäß der Europäischen Technischen Bewertung. Insbesondere sind die folgenden Punkte entsprechend zu beachten:

- Personal und Ausrüstung
- Die Eignung der durch den Hersteller eingerichteten werkseigenen Produktionskontrolle
- Vollständige Umsetzung des festgelegten Prüfplans
- 5.2.2 Kontinuierliche Überwachung, Bewertung und Evaluierung der werkseigenen Produktionskontrolle

Die notifizierte Produktzertifizierungsstelle führt mindestens einmal jährlich eine routinemäßige Überwachung im Herstellungsbetrieb durch. Insbesondere werden folgende Punkte entsprechend beachtet.

- Das Herstellungsverfahren einschließlich Personal und Ausrüstung
- Die werkseigene Produktionskontrolle
- Die Umsetzung des festgelegten Pr
 üfplans

Auf Verlangen sind die Ergebnisse der laufenden Überwachung dem Österreichischen Institut für Bautechnik durch die notifizierte Produktzertifizierungsstelle vorzulegen. Wenn die Bestimmungen der Europäischen Technischen Bewertung oder des festgelegten Prüfplans nicht mehr erfüllt sind, ist die Bescheinigung der Leistungsbeständigkeit durch die notifizierte Produktzertifizierungsstelle zu entziehen.


Ausgestellt in Wien am 22.11.2023 vom Österreichischen Institut für Bautechnik

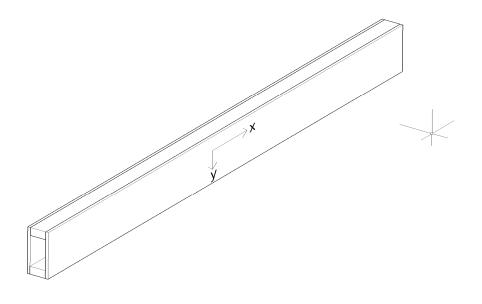
Das Originaldokument ist unterzeichnet von:

Dipl. Ing. Dr. Georg Kohlmaier Stv. Geschäftsführer

Abbildung 1: Grundsätzlicher Aufbau der Egger EcoBox

b ... Breite der Egger EcoBox

h ... Höhe der Egger EcoBox


b_w ... Dicke der Stege

b_f ... Breite der Flansche

h_f ... Höhe der Flansche

hw ... lichte Steghöhe

Abbildung 2: Orientierung der OSB-Stege; x = Hauptachse y = Nebenachse

Egger EcoBox	Anhang 1
	der Europäischen Technischen Bewertung ETA-23/0669 vom 22.11.2023

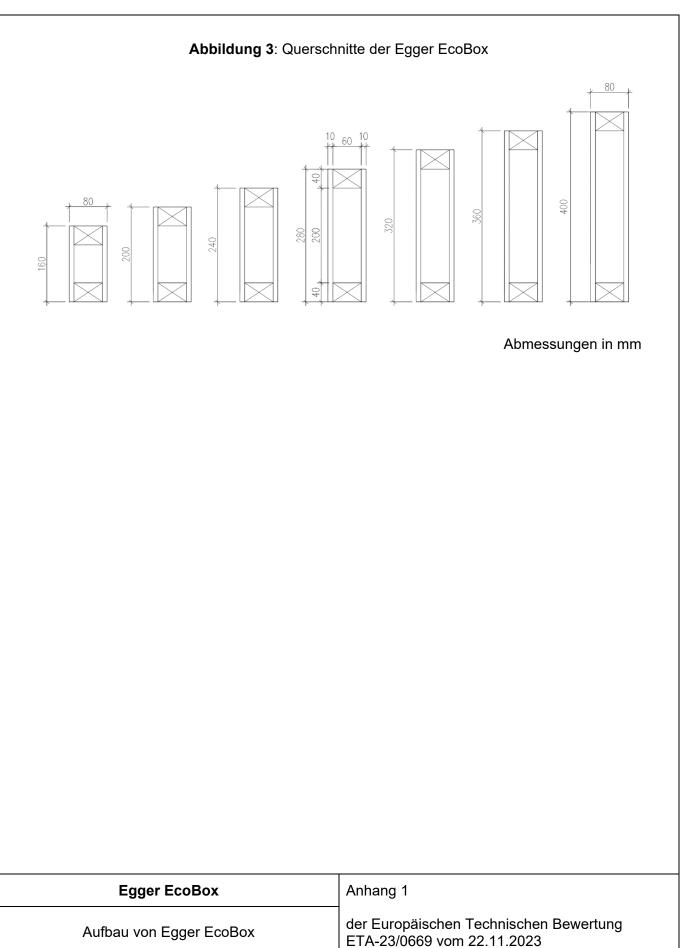


Tabelle 2: Abmessungen und Produktmerkmale

Eigenschaft		Abmessung / Eigenschaft		
Egger E	соВох	(
Produkttyp		EB.80/10		
Breite b	mm	80		
Höhe h	mm	160 bis 400		
Länge	m	≤ 13,0		
Flans	sche			
Oberfläche	_	gehobelt		
Breite b _f	mm	60		
Höhe h _{f,t} , h _{f,c}	mm	40		
Nach Festigkeit sortiertes Bauholz für tragende Zwecke mit rechteckigem Querschnitt gemäß EN 14081-1 oder keilgezinktes Vollholz für tragende Zwecke gemäß EN 15497		≤ 13,0 gehobelt 60		
Festigkeit- und Steifigkeitseigenschaften und Dichte:		$\begin{split} f_{t,0,k} &= 8,5 \text{ MPa} \\ f_{c,0,k} &= 17 \text{ MPa} \\ f_{v,k} &= 3,2 \text{ MPa} \\ E_{m,0,mean} &= 8000 \text{ MPa} \\ E_{m,0,k} &= 5400 \text{ MPa} \\ G_{mean} &= 500 \text{ MPa} \\ \rho_k &= 310 \text{ kg/m}^3 \end{split}$		
K _{def}		0,6 in Nutzungsklasse 1 0,8 in Nutzungsklasse 2		

Egger EcoBox	Anhang 2
Kennwerte von Egger EcoBox	der Europäischen Technischen Bewertung ETA-23/0669 vom 22.11.2023

Eigenschaft		Abmessung / Eigenschaft
Ste	ge	
Dicke b _w	mm	10
Höhe h	mm	160 bis 400
Platten für tragende Zwecke zur Verwendung im Feuchtbereich gemäß EN 300	_	OSB/3
		$\begin{array}{c} f_{t,x,k} = 9,9 \text{ MPa} \\ f_{t,y,k} = 7,2 \text{ MPa} \\ f_{c,x,k} = 15,9 \text{ MPa} \\ f_{c,y,k} = 12,9 \text{ MPa} \\ f_{v,k} = 6,8 \text{ MPa} \\ f_{v,r,k} = 1,0 \text{ MPa} \\ E_{t,x} = E_{c,x} = 3800 \text{ MPa} \\ E_{t,y} = E_{c,y} = 3000 \text{ MPa} \\ E_{m,x,panel} = 4930 \text{ MPa} \\ E_{m,y,panel} = 1980 \text{ MPa} \\ G_{v,mean} = 1080 \text{ MPa} \\ \rho_{mean} = 600 \text{ kg/m}^3 \end{array}$
K _{def}		1,5 in Nutzungsklasse 1 2,25 in Nutzungsklasse 2

Egger EcoBox	Anhang 2
Kennwerte von Egger EcoBox	der Europäischen Technischen Bewertung ETA-23/0669 vom 22.11.2023

Tabelle 3: Kennwerte von Egger EcoBox

GA	Wesentliches Merkmal	Bewertungsverfahren	Stufe / Klasse / Beschreibung					
1	Mechanische Festigkeit und	l Standsicherheit						
	Biegemomententragfähigkeit (hochkant und flachkant)	EN 1995-1-1 und Anhang 3	siehe Tabelle 5 und Tabelle 6					
	Zugtragfähigkeit parallel zum Produkt	EAD 130367-00-0304, Abschnitt 2.2.3	siehe Tabelle 8					
	Drucktragfähigkeit parallel zum Produkt	EN 1995-1-1 und Anhang 3	siehe Tabelle 7					
	Auflagertragfähigkeit $F_{bear,cal}$	EN 1995-1-1 und Anhang 3	siehe Tabelle 9					
	Schubtragfähigkeit (hochkant)	EN 1995-1-1 und Anhang 3	siehe Tabelle 9					
	E-Modul parallel zur Faserrichtung – Biegesteifigkeit	EN 1995-1-1 und Anhang 3	siehe Tabelle 4					
	Schubsteifigkeit	EAD 130367-00-0304, Abschnitt 2.2.9	siehe Tabelle 9					
	Dichte	ρ_{mean} und ρ_{k} gemäß Tabelle 2	2					
	Kriechen- und Lasteinwirkungsdauer	k _{def} gemäß Tabelle 2 k _{mod} gemäß EN 1995-1-1, Ta	belle 3.1					
	Verklebungsgüte und Dauerhaftigkeit der Verklebung	EAD 130367-00-0304, Abschnitt 2.2.15	Die Klebeverbindung zwischen den Komponenten ist genauso stark wie die Komponenten selbst.					
	- Scherprüfung gemäß EN 14080, Anhang D - Prüfung gemäß EN 14374, Anhang B		Holzbruchanteil > 80% Holzbruchanteil > 70%					
	EN 14374, Anhang B		Holzbruchantell > 70%					

Egger EcoBox	Anhang 2
Kennwerte von Egger EcoBox	der Europäischen Technischen Bewertung ETA-23/0669 vom 22.11.2023

Tabelle 4 fortgesetzt: Kennwerte von Egger EcoBox

GA	Wesentliches Merkmal	Bewertungsverfahren	Stufe / Klasse / Beschreibung						
2	Brandschutz								
	<u>Brandverhalten</u>								
	Bauholz für tragende Zwecke OSB/3	Entscheidung der Kommission 2003/43/EC geändert durch 2003/593/EC, 2006/673/EC und 2007/348/EC	Min. Mittelwert der Rohdichte $\geq 350 \text{ kg/m}^3$ Gesamtdicke $\geq 22 \text{ mm}$ Euroklasse D-s2, d0 Dichte $\geq 600 \text{ kg/m}^3$ Gesamtdicke $\geq 9 \text{ mm}$ Euroklasse D-s2,d0						
-	Aspekte der Dauerhaftigk	ceit							
	Natürliche Dauerhaftigkeit von Holz – Gebrauchsklassen	EN 335	1 und 2						

Egger EcoBox	Anhang 2				
Kennwerte von Egger EcoBox	der Europäischen Technischen Bewertung ETA-23/0669 vom 22.11.2023				

Berechnung von Bemessungswerten

Bemessungswerte können gemäß EN 1995-1-1, Abschnitt 2.4.3 (1), wie folgt berechnet werden:

Für Festigkeitseigenschaften:

$$X_{Rd} = \min\left(\frac{X_{Rk,wood} * k_{mod,wood}}{\gamma_{m,wood}}; \frac{X_{Rk,OSB} * k_{mod,OSB}}{\gamma_{m,OSB}}\right)$$

Für Biegemomententragfähigkeiten:

$$M_{y/z,Rd} = \min\left(\frac{M_{y/z,Rk,wood} * k_{mod,wood}}{\gamma_{m,wood}} ; \frac{M_{y/z,Rk,OSB} * k_{mod,OSB}}{\gamma_{m,OSB}}\right)$$

Für die Berechnung im Grenzzustand der Tragfähigkeit in Nutzungsklasse 1 und 2 (ständige Einwirkung) sind die Verformungsbeiwerte k_{def} für Holz und OSB gemäß Tabelle 2 und EN 1995-1-1, Abschnitt 2.3.2.2, zu berücksichtigen.

Querschnittswerte, mechanische Festigkeit und Standsicherheit

Tabelle 4: Abmessungen, Querschnittswerte und Steifigkeiten zum Zeitpunkt t = 0 und $t = \infty$ in Nutzungsklasse 1 und 2

Querschnitt		Steifigkeit Querschnitt													
		Querschnittswerte					t = 0								
h	h _f	b	h _w	A _{wood}	$I_{y,wood}$	$I_{z,wood}$	A _{OSB}	$I_{y,OSB}$	$I_{z,OSB}$	A _{ef,t=0}	I _{y,ef,t=0}	I _{z,ef,t=0}	EA _{t=0}	El _{y,t=0}	EI _{z,t=0}
mm	mm	mm	mm	cm ²	cm⁴	cm ⁴	cm²	cm ⁴	cm ⁴	cm²	cm ⁴	cm ⁴	kN	kN*m²	kN*m²
160	40	80	80	48,0	1.792	144	32,0	683	395	63,2	2.116	331	50560	169,30	26,52
200	40	80	120	48,0	3.136	144	40,0	1.333	493	67,0	3.769	378	53600	301,55	30,27
240	40	80	160	48,0	4.864	144	48,0	2.304	592	70,8	5.958	425	56640	476,67	34,02
280	40	80	200	48,0	6.976	144	56,0	3.659	691	74,6	8.714	472	59680	697,11	37,77
320	40	80	240	48,0	9.472	144	64,0	5.461	789	78,4	12.066	519	62720	965,29	41,51
360	40	80	280	48,0	12.352	144	72,0	7.776	888	82,2	16.046	566	65760	1.283,65	45,26
400	40	80	320	48,0	15.616	144	80,0	10.667	987	86,0	20.683	613	68800	1.654,61	49,01

				t = [∞] Nutzungsklasse 1						t =	∞ Nut	zungsklas	se 2		
h	h _f	b	h _w	A _{ef,t=∞}	I _{y,ef,t=∞}	I _{z,ef,t=∞}	EA _{t=∞}	El _{y,t=∞}	EI _{z,t=∞}	A _{ef,t=∞}	I _{y,ef,t=∞}	I _{z,ef,t=∞}	EA _{t=∞}	El _{y,t=∞}	EI _{z,t=∞}
mm	mm	mm	mm	cm ²	cm ⁴	cm⁴	kN	kN*m²	kN*m²	cm²	cm ⁴	cm ⁴	kN	kN*m²	kN*m²
160	40	80	80	57,7	2.000	264	28.864	99,98	13,20	56,4	1.972	248	25.075	87,63	11,01
200	40	80	120	60,2	3.541	294	30.080	177,07	14,70	58,5	3.487	274	26.010	154,97	12,17
240	40	80	160	62,6	5.564	324	31.296	278,22	16,20	60,6	5.470	300	26.946	243,12	13,32
280	40	80	200	65,0	8.088	354	32.512	404,41	17,70	62,7	7.939	326	27.881	352,82	14,48
320	40	80	240	67,5	11.132	384	33.728	556,61	19,20	64,8	10.909	352	28.816	484,83	15,63
360	40	80	280	69,9	14.716	414	34.944	735,80	20,70	66,9	14.398	378	29.752	639,90	16,78
400	40	80	320	72,3	18.859	444	36.160	942,93	22,20	69,0	18.422	404	30.687	818,76	17,94

Egger EcoBox	Anhang 2
Kennwerte von Egger EcoBox	der Europäischen Technischen Bewertung ETA-23/0669 vom 22.11.2023

Tabelle 5: Homogenisierungsfaktoren und char. Biegemoment – Hauptrichtung – $M_{y,Rk}$ – zum Zeitpunkt t=0 und $t=\infty$ in Nutzungsklasse 1 und 2

Но	Holz OSB			$M_{y,Rk}$ $t = 0$		M _{y,Rk} t = ∞ Nu	tzungsklasse 1	M _{y,Rk} t = ∞ Nutzungsklasse 2	
$k_{h,m,wood}$	$k_{h,t,wood}$	$k_{\text{h,m,OSB}}$	h	Holz	OSB	Holz	OSB	Holz	OSB
-	-	-	mm	kN*m	kN*m	kN*m	kN*m	kN*m	kN*m
1,60	2,10	1,21	160	6,00	6,69	5,67	9,88	5,59	11,26
1,45	1,98	1,10	200	7,94	8,63	7,46	12,67	7,34	14,41
1,34	1,89	1,01	240	9,59	10,47	8,96	15,28	8,81	17,36
1,25	1,82	0,94	280	11,25	12,24	10,44	17,76	10,25	20,14
1,17	1,76	0,89	320	12,91	13,97	11,91	20,14	11,67	22,81
1,11	1,71	0,84	360	14,59	15,66	13,38	22,44	13,09	25,37
1,06	1,67	0,80	400	16,28	17,33	14,84	24,69	14,50	27,87

Tabelle 6: Homogenisierungsfaktoren und char. Biegemoment – schwache Richtung – $M_{z,Rk}$ – zum Zeitpunkt t=0 und $t=\infty$ in Nutzungsklasse 1 und 2

	•			3				
Holz		$M_{z,Rk}$	t = 0	M _{z,Rk} Nutzungs	t = ∞ sklasse 1	M _{z,Rk} t = ∞ Nutzungsklasse 2		
$k_{h,m,wood}$	h	Holz	OSB	Holz	OSB	Holz	OSB	
-	mm	kN*m	kN*m	kN*m	kN*m	kN*m	kN*m	
1,60	160	2,12	1,73	1,69	2,15	1,59	2,33	
1,45	200	2,42	1,97	1,88	2,39	1,75	2,58	
1,34	240	2,72	2,22	2,08	2,64	1,92	2,82	
1,25	280	3,02	2,46	2,27	2,88	2,09	3,06	
1,17	320	3,32	2,70	2,46	3,13	2,25	3,31	
1,11	360	3,62	2,95	2,65	3,37	2,42	3,55	
1,06	400	3,92	3,19	2,84	3,61	2,59	3,80	

Tabelle 7: Berechnete char. Drucktragfähigkeit parallel zum Produkt zum Zeitpunkt t = 0 und $t = \infty$ in Nutzungsklasse 1 und 2

	$N_{c,Rk}$ t = 0		N _{c,Rk} t = ∞ N _t	utzungsklasse 1	$N_{c,Rk}$ $t = \infty$ Nutzungsklasse 2		
h	Holz	OSB	Holz	OSB	Holz	OSB	
mm	kN	kN	kN	kN	kN	kN	
160	107	212	98	302	96	341	
200	114	224	102	315	99	354	
240	120	237	106	327	103	366	
280	127	250	111	340	107	379	
320	133	262	115	353	110	392	
360	140	275	119	366	114	405	
400	146	288	123	378	117	417	

Egger EcoBox	Anhang 2
Kennwerte von Egger EcoBox	der Europäischen Technischen Bewertung ETA-23/0669 vom 22.11.2023

Tabelle 8: Berechnete char. Zugtragfähigkeit parallel zum Produkt zum Zeitpunkt t = 0 and $t = \infty$ in Nutzungsklasse 1 und 2

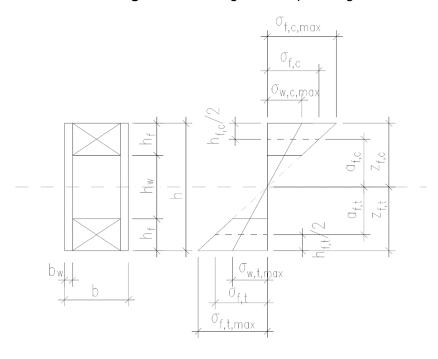
Holz		$N_{t,Rk}$	t = 0	N _{t,Rk} t = ∞ N _t	utzungsklasse 1	$N_{t,Rk}$ $t = \infty$ Nutzungsklasse	
$k_{h,t,wood}$	h	Holz	OSB	Holz	OSB	Holz	OSB
-	mm	kN	kN	kN	kN	kN	kN
1,20	160	65	132	59	188	58	212
1,20	200	68	140	61	196	60	220
1,20	240	72	148	64	204	62	228
1,20	280	76	155	66	212	64	236
1,20	320	80	163	69	220	66	244
1,20	360	84	171	71	228	68	252
1,20	400	88	179	74	236	70	260

Tabelle 9: Berechnete char. Schubtragfähigkeit zum Zeitpunkt t = 0 and t = ∞ in Nutzungsklasse 1 und 2

			$V_{z,Rk}$	Auflage	$V_{y,Rk}$		
			Klebefäch	e			
h	Steg	t = 0	t = ∞ NKL=1	t = ∞ NKL=2	Endauflager	Mittenauflager	
mm	kN	kN	kN	kN	cm	cm	kN
160	16,3	11,8	11,1	11,0	5,0	10,0	10,2
200	21,8	15,7	14,8	14,5	6,5	13,0	10,2
240	27,2	19,9	18,5	18,2	8,0	16,0	10,2
280	32,6	24,2	22,5	22,1	9,5	19,0	10,2
320	38,1	28,7	26,5	26,0	11,5	23,0	10,2
360	43,5	33,4	30,7	30,0	13,0	26,0	10,2
400	49,0	38,3	34,9	34,1	15,0	30,0	10,2
* Auflagerla	änge um die	volle Scl	hubtragfähigkeit V _z	_{z,Rk} zu aktivieren			

Tabelle 10: Berechnete char. Drucktragfähigkeit für EcoBox Stützen auf Grundplatte (Nadelholz C24)

	Druck	Drucktragfähigkeit – Stütze auf Grundplatte (C24 Nadelholz)							
	Rand	Mitte		Rand	Mitte				
h	A _{ef,1}	A _{ef,2}	k _{c90}	N _{c,Rk,1}	N _{c,Rk,2}				
mm	cm ²	cm²	-	kN	kN				
160	128,0	160,0	1,25	40	50				
200	148,0	184,0	1,25	46	58				
240	168,0	208,0	1,25	53	65				
280	188,0	232,0	1,25	59	73				
320	208,0	256,0	1,25	65	80				
360	228,0	280,0	1,25	71	88				
400	248,0	304,0	1,25	62	95				


Egger EcoBox	Anhang 2
Kennwerte von Egger EcoBox	der Europäischen Technischen Bewertung ETA-23/0669 vom 22.11.2023

Biegemomententragfähigkeit und Biegesteifigkeit

Die Biegemomententragfähigkeit kann gemäß EN 1995-1-1, Abschnitt 9.1.1, berechnet werden. Das Prinzip der Spannungsverteilung ist im Folgenden dargestellt:

Abbildung 4: Abmessungen und Spannungen

Die Berechnungen erfolgen anhand des effektiven Querschnitts (gesamter Querschnitt aus Flanschmaterial) mit

$$A_{ef} = A_{wood} + \frac{E_{OSB}}{E_{wood}} A_{OSB}$$
 und $I_{ef} = I_{wood} + \frac{E_{OSB}}{E_{wood}} I_{OSB}$

und

 $E_{mean,fin} = \frac{E_{mean}}{(1+k_{def}\cdot \varphi_2)}$ für Berechnung im Grenzzustand der Tragfähigkeit in Nutzungsklasse 1 und 2 (ständige Einwirkung)

Die resultierenden Spannungen im OSB werden auf den ursprünglichen Querschnitt zurücktransformiert.

Die berechneten Spannungswerte dürfen die Festigkeit der Komponenten zum Zeitpunkt t=0 und t=∞ in keinem Punkt des Querschnitts überschreiten. Die Spannungen sind gemäß EN 1995-1-1, Abschnitt 9.1.1, nachzuweisen. Daraus können die char. Biegemomententragfähigkeiten berechnet werden z.B. für Hochkantbiegung:

Randspannungen im Druckgurt

$$\sigma_{f,c,max,k} \leq f_{m,k} \cdot k_{h,m,wood}$$

$$M_{y,max,k} = \frac{f_{m,k} \cdot k_{h,m,wood} \cdot I_{ef,fin}}{z_{f,c}}$$

Egger EcoBox	Anhang 3
Berechnung von Egger EcoBox	der Europäischen Technischen Bewertung ETA-23/0669 vom 22.11.2023

- Randspannungen im Zuggurt

$$\begin{split} \sigma_{f,t,max,k} &\leq f_{m,k} \cdot k_{h,m,wood} \\ M_{y,max,k} &= \frac{f_{m,k} \cdot k_{h,m,wood} \cdot I_{ef,fin}}{z_{f,t}} \end{split}$$

Schwerpunktspannung im Druckgurt

$$\sigma_{f,c,k} \le f_{c,0,k} \cdot k_c$$

$$M_{y,max,k} = \frac{f_{c,0,k} \cdot I_{ef,fin}}{a_{f,c}}$$

Schwerpunktspannung im Zuggurt

$$\begin{split} \sigma_{f,t,k} &\leq f_{t,0,k} \cdot k_{h,t,wood} \\ M_{y,max,k} &= \frac{f_{t,0,k} \cdot k_{h,t,wood} \cdot I_{ef,fin}}{a_{f,t}} \end{split}$$

char. Druckspannung im Steg

$$\begin{split} \sigma_{w,c,k} &\leq f_{c,\text{OSB},k} \\ M_{y,max,k} &= \frac{f_{c,\text{OSB},k} \cdot I_{ef,inst}}{z_{f,c}} \cdot \frac{E_{wood}}{E_{OSB}} \end{split}$$

char. Zugspannung im Steg

$$\sigma_{w,t,k} \leq f_{t,OSB,k} \cdot k_{h,m,OSB}$$

$$M_{y,max,k} = \frac{f_{t,OSB,k} \cdot k_{h,m,OSB} \cdot I_{ef,inst}}{z_{f,t}} \cdot \frac{E_{wood}}{E_{OSB}}$$

Die Faktoren $k_{h,m}$ und $k_{h,t}$ wurden in Anlehnung an k_h für Vollholz gemäß EN 1995-1-1, Abschnitt 3.2 (3) wie folgt bestimmt:

$$k_{h,m,wood} = k_{hom,m,wood} \cdot \left(\frac{150}{h}\right)^{0,45} \text{ mit } k_{hom,m,wood} = 1,64$$

$$k_{h,m,OSB} = k_{hom,m,OSB} \cdot \left(\frac{150}{h}\right)^{0,45} \text{ mit } k_{hom,m,OSB} = 1,26$$

$$k_{h,t,wood} = k_{hom,t,wood} \cdot \left(\frac{150}{h}\right)^{0,25} \text{ mit } k_{hom,t,wood} = 2,13$$

Faktor $k_c = 1$ gemäß EN 1995-1-1, Abschnitt 9.1.1 (3).

Die Biegesteifigkeit kann wie folgt berechnet werden:

$$EI_{ef} = E_{wood} \cdot I_{ef}$$

Egger EcoBox	Anhang 3
Berechnung von Egger EcoBox	der Europäischen Technischen Bewertung ETA-23/0669 vom 22.11.2023

Zugtragfähigkeit parallel zum Produkt

Berechnung der Zugtragfähigkeit parallel zum Produkt:

$$N_{t,k} = f_{t,0,k} \cdot k_{h,t} \cdot A_{ef}$$

Der Faktor $k_{h,t}$ kann wie k_h für Vollholz gemäß EN 1995-1-1, Abschnitt 3.2 (3), berechnet werden:

$$k_{h,t} = \left(\frac{150}{b_{wood}}\right)^{0,2}$$

Drucktragfähigkeit parallel zum Produkt

Berechnung der Drucktragfähigkeit parallel zum Produkt gemäß EN 1995-1-1, Abschnitt 9.1.4 und Anhang C. Hierbei wird davon ausgegangen, dass die Last im Schwerpunkt wirkt (Instabilität durch Knicken wird hier nicht berücksichtigt).

Die Berechnungen erfolgen anhand des effektiven Querschnitts (gesamter Querschnitt aus Flanschmaterial) mit

$$A_{ef} = A_{wood} + \frac{E_{OSB}}{E_{wood}} A_{OSB}$$

Die Drucktragfähigkeit parallel zum Produkt entspricht der Drucktragfähigkeit parallel zu den Flanschen.

Die berechneten Spannungswerte dürfen die Festigkeit der Komponenten in keinem Punkt des Querschnitts überschreiten. Die folgenden Spannungen sind gemäß EN 1995 1 1, Anhang C, nachzuweisen:

$$\sigma_{c,0,k} = f_{c,0,k} \cdot k_c$$

Faktor $k_c = 1$ gemäß EN 1995-1-1, Abschnitt 9.1.1 (3).

Daraus kann die char. Drucktragfähigkeit parallel zum Produkt berechnet werden:

$$F_{c,k} = f_{c,0,k} \cdot A_{ef,fin}$$

Im Falle der Berücksichtigung der Instabilität durch Knicken kann der Schlankheitsgrad um die z/y-Achse wie folgt bestimmt werden:

$$\lambda_{z/y} = l \cdot \sqrt{\frac{A}{I_{z/y,ef}}}$$

Egger EcoBox	Anhang 3
Berechnung von Egger EcoBox	der Europäischen Technischen Bewertung ETA-23/0669 vom 22.11.2023

Auflagertragfähigkeit

Für die Bemessung von Auflagern und Lasteinleitungspunkten kann vereinfacht auf der sicheren Seite liegend angenommen werden, dass nur die beiden OSB Stege mit ihrer Druckfestigkeit in Plattenrichtung f_{c,y,k} wirken.

Die Auflagertragfähigkeit wird durch die Schubtragfähigkeit mit den angegebenen Auflagerlängen gemäß Tabelle 9 begrenzt.

Schubtragfähigkeit

Berechnung der Schubtragfähigkeit gemäß EN 1995-1-1, Abschnitt 9.1.1.

Die berechneten Spannungswerte dürfen die Festigkeit der Komponenten in keinem Punkt des Querschnitts überschreiten. Die Spannungen sind gemäß EN 1995 1 1, Abschnitt 9.1.1, nachzuweisen. Daraus können die char. Schubtragfähigkeiten berechnet werden:

Schubspannung im Steg

$$F_{v,w,Ek} \leq \begin{cases} b_w h_w \left(1 + \frac{0.5 \left(h_{f,t} + h_{f,c}\right)}{h_w}\right) f_{v,0,k} \text{ für } h_w \leq 35 b_w \\ 35 b_w^2 \left(1 + \frac{0.5 \left(h_{f,t} + h_{f,c}\right)}{h_w}\right) f_{v,0,k} \text{ für } 35 b_w \leq h_w \leq 70 b_w \end{cases}$$

Da in allen Fällen $h_w \leq 35b_w$ folgt

$$F_{v,max,k} = 2 \cdot b_w \cdot h_w \left(1 + \frac{0.5(h_{f,t} + h_{f,c})}{h_w} \right) \cdot f_{v,0,k}$$

Schubspannung in der Klebefläche zwischen Flanschen und Steg

$$\tau_{mean,k} \leq \begin{cases} f_{v,90,k} \text{ for } h_f \leq 4b_w \\ f_{v,90,k} \left(\frac{4b_w}{h_f}\right)^{0,8} \text{ for } h_f > 4b_w \end{cases}$$

Da in allen Fällen $h_f \leq 4b_w$ folgt

$$F_{v,max,k} = \frac{2 \cdot I_{ef} \cdot l_{glue} \cdot f_{v,90,k}}{S_{ef}}$$

Schubsteifigkeit

Die Schubsteifigkeit für geklebte dünnstegige Träger wird anhand des Querschnitts und Materials der Stege definiert.

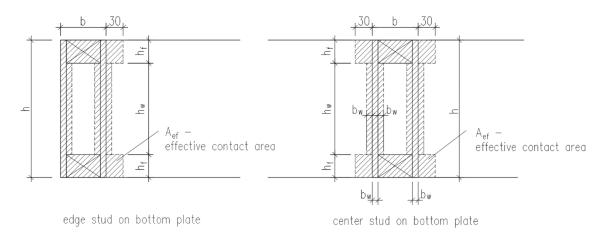
Berechnung der Schubsteifigkeit:

$$(GA)_{calc} = G_{OSB,mean} \cdot 2 \cdot b_w \cdot h_w$$

Egger EcoBox	Anhang 3
Berechnung von Egger EcoBox	der Europäischen Technischen Bewertung ETA-23/0669 vom 22.11.2023

Drucktragfähigkeit - Stütze auf Grundplatte

Berechnung der Drucktragfähigkeit von Egger EcoBox Stützen auf einer Grundplatte (C24) gemäß EN 1995, Abschnitt 6.1.5, mit einer effektiven Kontaktlänge für die Flansche und Stege gemäß Abbildung 6 und 7:


$$N_{c,Rk} = A_{ef} \cdot f_{c,90,k} \cdot k_{c,90}$$

k_{c,90} = 1,25 für Nadelvollholz gemäß EN 1995-1-1.

Abbildung 6: Definition von Rand- und Mittelstützen (graue Fläche zeigt Aef)

Abbildung 7: Definition von Aef für Egger EcoBox Stützen auf Grundplatte (C24)

Egger EcoBox	Anhang 3
Berechnung von Egger EcoBox	der Europäischen Technischen Bewertung ETA-23/0669 vom 22.11.2023

Europäisches Bewertungsdokument (EAD) 130367-00-0304 "Balken und Stützen auf Verbundholzbasis"

EN 300 (06.2006), Platten aus langen, flachen, ausgerichteten Spänen (OSB) – Definitionen, Klassifizierung und Anforderungen

EN 301 (11.2017), Klebstoffe, Phenoplaste und Aminoplaste, für tragende Holzbauteile – Klassifizierung und Leistungsanforderungen

EN 335 (03.2013), Dauerhaftigkeit von Holz und Holzprodukten – Gebrauchsklassen: Definitionen, Anwendung bei Vollholz und Holzprodukten

EN 338 (04.2016), Bauholz für tragende Zwecke – Festigkeitsklassen

EN 1995-1-1 (11.2004), +AC (06.2006), +A1 (06.2008), +A2 (05.2014), Eurocode 5 – Bemessung und Konstruktion von Holzbauwerken – Teil 1-1: Allgemeines – Allgemeine Regeln und Regeln für den Hochbau

EN 1998-1 (12.2004)+AC (07.2009)+A1 (02.2013), Eurocode 8: Auslegung von Bauwerken gegen Erdbeben – Teil 1: Grundlagen, Erdbebeneinwirkungen und Regeln für Hochbauten

EN 14081-1:2016+A1 (08.2019), Holzbauwerke – Nach Festigkeit sortiertes Bauholz für tragende Zwecke mit rechteckigem Querschnitt – Teil 1: Allgemeine Anforderungen

EN 15425 (01.2017), Klebstoffe – Einkomponenten-Klebstoffe auf Polyurethanbasis für tragende Holzbauteile – Klassifizierung und Leistungsanforderungen

EN 15497 (04.2014), Keilgezinktes Vollholz für tragende Zwecke – Leistungsanforderungen und Mindestanforderungen an die Herstellung

Egger EcoBox	Anhang 4
Bezugsdokumente	der Europäischen Technischen Bewertung ETA-23/0669 vom 22.11.2023